
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS

Int. J. Numer. Model. 2003; 16:175–178 (DOI: 10.1002/jnm.492)

Huygens’ principle in the transmission line matrix method
(TLM). Local theory

Peter Enders1,n,y and Christian Vanneste2,z

1Fischerinsel 2, D-10179 Berlin, Germany
2Laboratoire de Physique de la Mati "eere Condens !eee, Universit !ee de Nice-Sophia Antipolis, Parc Valrose,

BP 71, 06108 Nice Cedex 2, France

SUMMARY

Huygens’ principle (HP) is a well-known fundamental principle of wave propagation. More generally, it
can be understood as representing the principle of action-by-proximity (cf. Faraday’s field theory etc.) and
the superposition of secondary wavelets re-irradiated at each point of the wavefront (Huygens’
construction). These wavelets are isotropic in free space and in isotropic materials. We will show, that
HP is realized within the transmission line matrix method (TLM) for scalar fields in free space of any
dimension, if one considers only the scattered fields to represent the secondary wavelets. This corrects and
generalizes the previous result for the total field in 2D. This property of TLM provides another explanation
for its wide range of applicability. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The transmission line matrix method (TLM) computes the propagation of short voltage or
current pulses on a network of lossless transmission lines and lumped resistors [1–3]. It
represents a wide range of transport and propagation problems, which are governed by the same
laws. One of them is Huygens’ principle (HP) in the sense of action-by-proximity (cf. Faraday’s
field theory etc.) and of the superposition of secondary wavelets (Huygens’ construction [4]); for
a precise formulation see Reference [5]. Each point of space reached by the wave front is
considered to be excited and re-irradiating a secondary wave(let). The symmetry of this
scattered wave is intimately related to the symmetry of the surrounding medium [6]. In
particular, the scattered wave is isotropic in an isotropic medium.

The relationship of TLM to HP has been addressed as early as 1974 [8] (for a review, see
Reference [7]). The secondary wavelets have been treated in terms of the intensity of the reflected
and transmitted voltage (or current) pulses on the TLM network. However, isotropy is obtained
only in case of a 2D lossless network, but not for a 3D lossless network. For, in the 3D case, the
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reflected voltage pulse amounts ð�2=3ÞV i; while the transmitted ones equal ð1=3ÞV i in all
directions, but that of the incident pulse, V i: In this letter, we will show, that the isotropy of
scattering is restored by discriminating between total and scattered fields, i.e. when the reflected
pulse is treated as the superposition of incident and scattered fields.

2. HUYGENS’ PRINCIPLE ON LOSSLESS TLM NETWORKS

Consider a node of a homogeneous 2D Cartesian lossless TLM network sketched in Figure 1
with an incident voltage pulse only from West, V i

W (as we will consider only scattering and not
propagation, we suppress the time step index, k; as well as the node index). This pulse represents
the incident field amplitude. The impedance discontinuity at the node gives rise to a reflected
voltage pulse, V r

W ¼ rð2DÞ
TLM � V i

W; where the reflection coefficient is [7]

rð2DÞ
TLM ¼

1
3
� 1

1
3 þ 1

¼ �
1

2
ð1Þ

Figure 1. Common representation of scattering at the node of a lossless 2D cartesian TLM network
[1, 3, 7]: (a) incident voltage pulse and (b) scattered voltage pulses. In all four directions, the intensity

represented by the squared outgoing travelling voltage pulses equals the same value, 1=4:
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The voltage pulses into the other three directions are V t
N ¼ V t

E ¼ V t
S ¼ tð2DÞ

line V
i
W; where

tð2DÞ
TLM ¼

1

3
ð1� rð2DÞ

TLMÞ ¼
1

2
ð2Þ

the line transmission coefficient, cf. Figure 1.
In previous treatments, isotropy of the reradiated wave(let) was stated as isotropy of intensity

of the outgoing pulses as

tð2DÞ2

line ¼ rð2DÞ2

TLM ð3Þ

It is easily seen, however, that this reasoning fails for a 3D node, where rð3DÞ
TLM ¼ �2

3
and tð3DÞ

line ¼ 1
3
;

hence,

tð3DÞ2

line =rð3DÞ2

TLM ð4Þ

Why? The crucial point consists in the fact, that within this interpretation, the reflected pulses
are identified with the (back-)scattered pulses. However, as matter of fact, the reflected pulses
correspond to the total field amplitudes, i.e. to the sum of the incident and of the backscattered
pulses. HP, however, refers to the scattered field only. We will now show, how HP is realized by
the scattered voltage pulses. The missing differentiation between scattered field and total field
being the sum of incident and scattered field is summarized in Table I.

The reflected pulse is the sum of the incident and of the back-scattered pulse.

V r
W ¼ V bs

W þ ð�1Þ � V i
W ð5Þ

The factor ð�1Þ accounts for the fact, that the incident and the back-scattered fields are moving
in opposite directions. Thus, the back-scattering coefficient, rbs; being defined through V r

W ¼
rð2DÞ
bs � V i

W is given by

rð2DÞ
bs ¼ rð2DÞ

TLM þ 1 ¼
1

2
ð6Þ

Hence,

tð2DÞ
line ¼ rð2DÞ

bs ð7Þ

Table I. Notions of incident, reflected, scattered and total fields.

Field Previous notion This letter

Incident field:
total field before scattering Incident pulse, V i

A Incident pulse, V i
A

Reflected field:
total field on the line of the
incident field after scattering

Reflected, kV r
A ; (back-)scattered

pulse, kV s
A

Reflected pulse,
V r
A ; V

r
A ¼ V bs

A þ ð�1Þ � V i
A
n

Back-scattered field:
scattered field on the line of
the incident field

Reflected, kV r
A (erronous) Back-scattered pulse, V bs

A

Total field on the other line(s)
after scattering

Transmitted/scattered pulse(s), V s
B=A (Forward and sideward)

transmitted pulse(s), V t
B=A

nThe factor of ‘�1’ accounts for the opposite direction of motion of incident and reflected fields.

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2003; 16:175–178

HUYGENS’ PRINCIPLE IN TLM LOCAL THEORY 177



It is this latter equality that states isotropic scattering referring to the amplitudes rather than to
the intensities!

It is easily shown, that this result applies to any isotropic scalar node in any spatial dimension
ðnDÞ; where

tðnDÞ
line ¼ rðnDÞ

bs ¼
1

n
ð8Þ

For non-Cartesian lattices, where a node connects m equal transmission lines (e.g., m ¼ 6 in a
hexagonal lattice), one has

tðmÞline ¼ rðmÞbs ¼
2

m
ð9Þ

3. DISCUSSION AND CONCLUSIONS

We have shown that the application of Huygens’ Principle (HP) requires a careful
discrimination of total and scattered fields. The emitters of the secondary wavelets are excited
by the total field. Huygens construction, however, applies to the scattered field amplitude rather
than to the total field intensity. The scattered field amplitude is isotropic in isotropic materials,
including free space. Thus, HP in the sense of propagation by action-by-proximity and
superposition of secondary wavelets applies to all scalar TLM nodes connecting an arbitrary
number of transmission lines of equal impedance. This result corrects and generalizes the
previous one for the total field in 2D. This property of TLM provides another explanation for
its wide range of applicability. Finally, it will be interesting to investigate how this picture is
modified when, (i) transmission lines of different impedances and (ii) losses are introduced.
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